Serving the Limb Loss Community for over 30 years

  • New Amputee?
  • Ask Us Questions
  • Connect With Us
  • Find Support Near You
  • Subscribe to inMotion FREE
  • Mission & Vision
  • Annual Report
  • Ethics, Whistleblower and Conflict of Interest Policies
  • THRIVE Blog
  • Employment Opportunities
  • Team Values
  • Diversity and Inclusion
  • National Sponsors
  • Hospital/Rehab Facility Partners
  • Current Member Facilities

Advertise With Us

Reach Your Target Audience!

  • Ask an Information and Referral Specialist
  • Frequently Asked Questions
  • Community Connections
  • Browse and Sort All Resources
  • State Resource Map
  • Pain Management Information
  • Mental Health and Wellness Information
  • Workforce Development Program
  • Publications
  • Educational Webinars
  • COVID-19 Resources and Support
  • Materiales en español / Spanish Materials
  • Partner Resources
  • How to Find Support
  • Certified Peer Visitor (CPV) Program
  • Amputee Coalition Virtual Support Group Meetings
  • Support Group Network
  • Advocacy Forum
  • Grassroots Advocacy Center
  • Federal Issues
  • State Issues
  • Lead Advocate Training
  • Ambassadors and Community Champions
  • Travel Questions/Concerns
  • Affordable Care Act
  • National Conference
  • Youth Engagement Program (YEP)
  • Limb Loss and Limb Difference Awareness Month (LLLDAM)
  • Limb Loss Education Days (LLEDs)
  • Advocacy and Leadership Scholarship Program (ALSP)
  • Christina Skoski, M.D., Scholarship
  • Town Hall with the President & CEO
  • Personal Rights & Privacy Policy
  • Donate Online, by Mail or by Phone
  • Donate to Youth Camp
  • Year-End Giving
  • Amputee Coalition Store
  • Create a Fundraiser or Event
  • Sustaining Donors
  • Get Your Employer Involved
  • More Ways to Give
  • Member Directory
  • Well-Being Program
  • Volunteer Research Opportunities
  • Research Partnerships
  • Information for Researchers
  • Our Research Priorities

Connect With Us!

physical therapy for phantom limb pain

  • Staff & Departments
  • Join Amputee Coalition
  • Media Request Form

Enter your search terms below.

Managing Phantom Pain

Managing Phantom Pain

« Back to All Levels

Phantom limb pain (PLP) refers to ongoing painful sensations that seem to be coming from the part of the limb that is no longer there. The limb is gone, but the pain is real.

The onset of this pain most often occurs soon after surgery. It can feel like a variety of things, such as burning, twisting, itching or pressure. It is often felt in fingers or toes. It is believed that nearly 80 percent of the amputee population worldwide has experienced this kind of pain.

The length of time this pain lasts differs from person to person. It can last from seconds to minutes, to hours, to days. For most people, PLP diminishes in both frequency and duration during the first six months, but many continue to experience some level of these sensations for years.

People are often reluctant to tell anyone that they are experiencing PLP or phantom limb sensations, for fear that they will be considered “crazy.” However, it is important to report these pains as soon as you begin to experience them so treatment can be started.

What Causes Phantom Limb Pain?

Unlike pain that is caused by trauma directly to a limb, PLP is thought to be caused by mixed signals from your brain or spinal cord. This is an important concept to consider, because the treatment for this pain has differences from the treatment you would receive for other kinds of pain. New therapies for PLP all involve trying to change the signals from your brain or spinal cord.

As with any other kind of pain, you may find that certain activities or conditions will trigger PLP. Some of these triggers might include:

  • Urination or defecation
  • Sexual intercourse
  • Cigarette smoking
  • Changes in barometric pressure
  • Herpes zoster
  • Exposure to cold.

If you notice any particular thing triggering an episode of PLP for you, let your healthcare provider know. Some triggers can be avoided – for example, you can prevent constipation or stop smoking. For other triggers, you will just have to understand and treat accordingly. You will not be able to prevent the barometric pressure from changing, but you will be able to understand that your PLP might be more severe on days with big shifts in the weather!

Treating Phantom Limb Pain

Treating PLP effectively takes a multipronged approach. Medications of several different categories in combination with non-medication treatments seem to be most effective. This combination of medication/non-medication is similar to treating other painful conditions.

For instance, if you broke your leg, you would expect to take narcotic pain medication, at least for a while. You would also elevate your leg and put ice on it.

For PLP pain management, you will take medications directed specifically toward interrupting the pain signals in your brain or spinal cord as well as using certain non-medication therapies, which also work on your brain’s interpretation of these signals.

Medications for Phantom Limb Pain

There are many different categories of medications that can decrease your pain. Each of them is thought to work on different kinds of pain sensations. The categories of some of the medications you might be given include:

  • Acetaminophen and non-steroidal anti-inflammatory drugs (NSAIDs)
  • Opioids (narcotic pain medications)
  • Antidepressants
  • Anticonvulsants
  • Beta-blockers
  • Muscle relaxants.

Some of these medications work best if taken in combination with other medications and if given at certain times of the day. The antidepressants typically used work best if given at bedtime, and are often taken at the same time as the anticonvulsants. Finding the right medications – with the fewest side effects – will require you and your healthcare provider to work closely together.

Non-Medication Treatments for Phantom Limb Pain

Alternative/complementary therapies can be helpful for the reduction of PLP. These include:

  • Acupuncture
  • Massage of the residual limb
  • Use of a shrinker
  • Repositioning of the residual limb by propping on a pillow or cushion
  • Mirror box therapy
  • Biofeedback
  • TENS (transcutaneous electrical nerve stimulation)
  • Virtual reality therapy

For further discussion of these non-medication treatments for phantom pain, click here to access an article addressing the topic from the Amputee Coalition’s I nMotion magazine.

There are also many videos online demonstrating how these therapies have worked for others and how they might work for you.

What You Need to Remember

  • Phantom limb pain/sensation is common for most people after amputation surgery. Symptoms generally improve over time.
  • Your phantom limb pain/sensation can be managed so that it does not overwhelm your life.
  • The goal of pain management is to reduce pain levels to allow you to get you back to living and enjoying life again.
  • Work closely with your healthcare team to create and maintain the pain management plan that works for you.
  • When possible, avoid things that trigger your phantom limb pain/sensation.
  • Use the Amputee Coalition Web site ( https://www.amputee-coalition.org ) to learn about new therapies and to let others know if a new therapy has worked for you.

This site uses cookies to provide a better user experience and analyze traffic. By continuing to use our website, you consent to our use of cookies.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Advanced Search
  • Journal List
  • Pain Res Treat
  • v.2011; 2011

Logo of prt

Phantom Limb Pain: Mechanisms and Treatment Approaches

The vast amount of research over the past decades has significantly added to our knowledge of phantom limb pain. Multiple factors including site of amputation or presence of preamputation pain have been found to have a positive correlation with the development of phantom limb pain. The paradigms of proposed mechanisms have shifted over the past years from the psychogenic theory to peripheral and central neural changes involving cortical reorganization. More recently, the role of mirror neurons in the brain has been proposed in the generation of phantom pain. A wide variety of treatment approaches have been employed, but mechanism-based specific treatment guidelines are yet to evolve. Phantom limb pain is considered a neuropathic pain, and most treatment recommendations are based on recommendations for neuropathic pain syndromes. Mirror therapy, a relatively recently proposed therapy for phantom limb pain, has mixed results in randomized controlled trials. Most successful treatment outcomes include multidisciplinary measures. This paper attempts to review and summarize recent research relative to the proposed mechanisms of and treatments for phantom limb pain.

1. Introduction

The concept of phantom limb pain (PLP) as being the pain perceived by the region of the body no longer present was first described by Ambrose Pare, a sixteenth century French military surgeon [ 1 ]. Silas Weir Mitchell, a famous Civil War surgeon in the nineteenth century, coined the term “phantom limb pain” and provided a comprehensive description of this condition [ 2 ]. It continues to remain a poorly understood and difficult to treat medical condition. A recent study estimated that there were about 1.6 million people with limb loss in the USA in 2005 and this number was projected to increase by more than double to 3.6 million by the year 2050 [ 3 ]. Vascular problems, trauma, cancer, and congenital limb deficiency are among the common causes of limb loss. The number of traumatic amputations has also increased since the beginning of conflict in Iraq and Afghanistan [ 4 ]. The incidence of PLP has been reported to range from 42.2 to 78.8% in patients requiring amputation [ 5 – 8 ].

Stump pain is described as the pain in the residual portion of the amputated limb whereas phantom sensations are the nonpainful sensations experienced in the body part that no longer exists [ 6 , 7 ]. Superadded phantom sensations are touch and pressure-like sensations felt on the phantom limb from objects such as clothing [ 9 ]. Risk factor for PLP are shown in Table 1 . Recent studies report the prevalence of PLP to be more common among upper limb amputees than lower limb amputees. It was also reported to be more common among females than males [ 10 , 11 ]. A survey reported greater overall average pain intensity and interference in females than males and females endorsed significantly greater catastrophizing, use of certain pain-coping strategies, and beliefs related to several aspects of pain resulting in poor adjustment [ 12 ]. Larger population studies are needed for more definite establishment of the risks associated due to the site of involved limb or gender of the patient in development of PLP. Phantom sensations and pain have been reported following amputation of different body parts including the eyes, teeth, tongue, nose, breast, penis, bowel, and bladder but the most common occurrence is following limb amputation [ 4 ]. The phantom pain and sensation may have its onset immediately or years after the amputation. There are reports of two peak periods of onset, the first within a month and the second a year after amputation [ 7 ]. The prevalence is reported to decrease over time after amputation [ 10 , 11 ]. PLP has been reported in people with congenital absence of limbs [ 13 ]. Tingling, throbbing, piercing, and pins and needles sensations were among the most commonly described types of pain [ 13 ]. The rate of phantom pain or sensation was not reported to be higher in people with bilateral limb amputation than those with single limb amputation [ 14 ]. A significant association has been reported between the PLP and residual limb pain [ 15 ]. The presence of preamputation pain is also reported to increase the risks of developing PLP [ 16 ]. It is likely that stress, anxiety, depression, and other emotional triggers contribute to the persistence or exacerbation of PLP. A study has found that amputees with depressive symptoms were more likely to characterize their pain as more severe than those without depressive symptoms [ 17 ].

Risk factors for phantom limb pain.

2. Mechanisms

PLP was once thought to be primarily a psychiatric illness. With the accumulation of evidence from research over the past decades, the paradigm has shifted more towards changes at several levels of the neural axis, especially the cortex [ 18 ]. Peripheral mechanisms and central neural mechanisms are among the hypotheses that have gained consensus as proposed mechanisms over the recent years. Proposed mechanisms to explain phantom limb pain are shown in Table 2 . However none of these theoretical constructs appears to be able to explain the phenomenon of PLP independently and many experts believe that multiple mechanism are likely responsible.

Proposed theoretical mechanisms to explain phantom limb pain.

2.1. Peripheral Mechanism

During amputation, peripheral nerves are severed. This results in massive tissue and neuronal injury causing disruption of the normal pattern of afferent nerve input to the spinal cord. This is followed by a process called deafferentation and the proximal portion of the severed nerve sprouts to form neuromas [ 18 ]. There is an increased accumulation of molecules enhancing the expression of sodium channels in these neuromas that results in hype-excitability and spontaneous discharges [ 19 ]. This abnormal peripheral activity is thought to be a potential source of the stump pain, including phantom pain [ 18 ]. Studies reporting the reduction of phantom pain with drugs blocking the sodium channels lend further support to this theory [ 20 , 21 ]. However, this cannot explain the mechanism of PLP in patients with congenital absence of limbs [ 4 , 18 ].

2.2. Central Neural Mechanisms

2.2.1. changes at the level of spinal cord.

The axonal sprouts at the proximal section of the amputated peripheral nerve form connections with the neurons in the receptive field of the spinal cord. Some neurons in the areas of spinal cord that are not responsible for pain transmission also sprout into the Lamina II of the dorsal horn of the spinal cord which is the area involved in the transmission of nociceptive afferent inputs [ 18 , 19 ]. This is followed by increased neuronal activity, expansion of the neuronal receptive field, and hyperexcitability of other regions. This process is called central sensitization. During this process, there is also an increase in the activity at NMDA receptors mediated by neurotransmitters such as substance P, tachykinins, and neurokinins at the dorsal horn of the spinal cord [ 22 ]. This is followed by a phenomenon called the “windup phenomenon” in which there is an upregulation of those receptors in the area [ 22 ]. This process brings about a change in the firing pattern of the central nociceptive neurons. The target neurons at the spinal level for the descending inhibitory transmission from the supraspinal centers may be lost. There also may be a reduction in the local intersegmental inhibitory mechanisms at the level of the spinal cord, resulting in spinal disinhibition and nociceptive inputs reaching the supra spinal centers. This lack of afferent input and changes at the level of the spinal cord have been proposed to result in the generation of PLP [ 22 – 24 ].

2.2.2. Changes at the Level of the Brain

Cortical reorganization is perhaps the most cited reason for the cause of PLP in recent years. During reorganization, the cortical areas representing the amputated extremity are taken over by the neighboring representational zones in both the primary somatosensory and the motor cortex [ 18 , 25 , 26 ]. The process and extent of cortical reorganization have been studied in both animal and human models following amputation and deafferentation. Cortical reorganization partly explains why the afferent nociceptive stimulation of neurons within the stump or surrounding area produces the sensation in the missing limb [ 4 , 27 ]. The extent of cortical reorganization has been found to be directly related to the degree of pain and the size of the deafferentiated region. Multiple imaging studies have correlated greater extent of somatosensory cortex involvement with more intense phantom limb experience [ 4 , 28 – 30 ].

Another proposed mechanism of PLP is based on the “body schema” concept that was originally proposed by Head and Holmes in 1912. The body schema can be thought of as a template of the entire body in the brain and any change to the body, such as an amputation, results in the perception of a phantom limb [ 31 ]. A further expansion of the body schema concept is the “neuromatrix and neurosignature” hypothesis proposed by Ronald Melzack in 1989. The neuromatrix can be conceptualized as a network of neurons within the brain that integrates numerous inputs from various areas including somatosensory, limbic, visual, and thalamocortical components. It then results in an output pattern that evokes pain or other meaningful experiences. The term “neurosignature” was proposed by Melzack to refer to the patterns of activity generated within the brain that are continuously being updated based upon one's conscious awareness and perception of the body and self. The deprivation of various inputs from the limbs to the neuromatrix causes an abnormal neurosignature to be produced that results in the generation of PLP [ 32 – 34 ].The other hypothesis relative to the mechanism of PLP has been derived from the research into illusory perceptions. It has been shown that the parietal and frontal lobes are also involved besides the primary somatosensory cortex in the perception of the abnormal somatosensory phenomenon [ 35 ]. Painful sensations, such as PLP, may be related to the incongruence of motor intention and sensory feedback and a corresponding activation of the parietal and frontal brain areas [ 36 , 37 ].

2.3. Psychogenic Mechanism

The assumption that PLP is of psychogenic origin has not been supported in the recent literature even though stress, anxiety, exhaustion, and depression are believed to exacerbate PLP [ 38 ]. A cross-sectional study found that amputation in people with personality traits characterized by passive coping styles and catastrophizing behavior was found to be associated with the development of PLP independent of anxiety and depression [ 39 ]. Most research on the relationship between psychological symptoms and PLP has been retrospective and cross sectional rather than longitudinal and thus limited inferences can be derived from these studies.

3. Treatment

A number of different therapies relying on different principles have been proposed for the management of PLP as shown in Table 3 . However, specific treatment guidelines are yet to evolve and most successful measures employ multidisciplinary approaches in the management of pain and in rehabilitation [ 40 ].

Treatments for phantom limb pain.

Adapted from [ 4 , 41 ].

3.1. Pharmacological Approaches

3.1.1. preemptive analgesia and anesthesia.

Preemptive use of analgesics and anesthetics during the preoperative period is believed to prevent the noxious stimulus from the amputated site from triggering hyperplastic changes and central neural sensitization which may prevent the amplification of future impulses from the amputation site [ 42 ]. However, the results of the studies in this area have not been definitive. A recent study reported the decrease in PLP at six months following amputation when optimized epidural analgesia or intravenous patient controlled analgesia was started between 48 hours preoperatively and 48 hours postoperatively [ 20 ]. Prolonged postoperative perineural infusion of ropivacaine 0.5% was reported to prevent or reduce PLP and sensations after lower extremity amputation [ 21 ]. Ketamine, however, was not found to significantly reduce acute central sensitization or the incidence and severity of postamputation pain [ 43 ]. A randomized controlled double-blind trial comparing epidural infusions between a group receiving ketamine and bupivacaine and another receiving ketamine and saline following intrathecal or epidural anesthetic for surgery showed no significant difference between the two groups but much less pain at one year was reported in both groups compared to other comparable studies [ 44 ].

3.1.2. Acetaminophen and Nonsteroidal Anti-Inflammatory Drugs (NSAIDs)

A cross sectional study found that acetaminophen and NSAIDs were the most common medications used in the treatment of PLP [ 45 ]. The analgesic mechanism of acetaminophen is not clear but serotonergic and multiple other central nervous system pathways are likely to be involved [ 46 ]. NSAIDs inhibit the enzymes needed for the synthesis of prostaglandin and decrease the nociception peripherally and centrally [ 47 ].

3.1.3. Opioids

Opioids bind to the peripheral and central opioid receptors and provide analgesia without the loss of touch, proprioception, or consciousness. They may also diminish cortical reorganization and disrupt one of the proposed mechanisms of PLP [ 4 ]. Randomized controlled trials have demonstrated the effectiveness of opioids (oxycodone, methadone, morphine, and levorphanol) for the treatment of neuropathic pain including PLP. Comparative trials have also shown benefit with opioids when compared with tricyclic antidepressants and gabapentin though the opioids were associated with more frequent side effects [ 48 ]. The total amount of opioid required to achieve analgesia may be less when used together with other agents, such as tricyclic antidepressants or anticonvulsants, which also have use in neuropathic pain modulation. Tramadol, a weak opioid and a mixed serotonin-noradrenalin reuptake inhibitor, has also been used in the treatment of PLP [ 4 , 49 ].

3.1.4. Antidepressants

Tricyclic antidepressants are among the most commonly used medications for various neuropathic pains including PLP. The analgesic action of tricyclic antidepressant is attributed mainly to the inhibition of serotonin-norepinephrine uptake blockade, NMDA receptor antagonism, and sodium channel blockade [ 50 ]. The role of tricyclic antidepressants is well established in other neuropathic pain conditions, but the results are mixed relative to their role on PLP [ 51 ]. A recent study reported excellent and stable PLP control with an average dose of 55 mg of amitryptline, but there are others in which tricyclic antidepressants failed to effectively control the pain. [ 49 , 52 ]. Nortriptyline and desipramine have been found to be equally effective and with less side effects compared to amitriptyline [ 53 ]. A small case series demonstrated the effectiveness of mirtazapine, an alpha 2 receptor antagonist with fewer side effects than tricyclic antidepressants in the treatment of PLP [ 54 ]. There are case reports relative to the efficacy of duloxetine, a NE and serotonin receptor inhibitor, in the treatment of PLP [ 55 ]. Even though there may be a role for the use of SSRI and SNRI in the treatment of neuropathic pain, the evidence is very limited and further research is needed [ 56 ].

3.1.5. Anticonvulsants

Gabapentin has shown mixed results in the control of PLP with some studies showing positive results while others not showing efficacy [ 57 – 59 ]. Carbamazepine has been reported to reduce the brief stabbing and lancinating pain associated with PLP. Oxcarbazepine and pregabalin may also play a role in the treatment of PLP, but further studies are required [ 4 , 60 ].

3.1.6. Calcitonin

The mechanism of action of calcitonin in treatment of PLP is not clear. Studies relative to its therapeutic role have been mixed [ 61 , 62 ].

3.1.7. NMDA Receptor Antagonist

The mechanism of action of NMDA receptor antagonism in PLP is not clear. Memantine has shown some benefits in some case studies but controlled trials have shown mixed results [ 63 , 64 ]. A review concluded that memantine may be useful soon after amputation rather than for use in chronic neuropathic pain conditions [ 65 ].

3.1.8. Other Medications

The beta blocker propranolol and the calcium channel blocker nifedipine have been used for the treatment of PLP [ 60 ]. However, their effectiveness is unclear and further studies are needed. Flupirtine, an NMDA antagonist and potassium channel agonist, has been reported to be effective when used together with opioids in cancer-related neuropathic pain but needs further studies for other etiologies [ 66 ].

3.2. Nonpharmacological Treatment

3.2.1. transcutaneous electrical nerve stimulation (tens).

Transcutaneous electrical nerve stimulation has been found to be helpful in PLP [ 40 ]. Historically, there have been multiple studies showing the effectiveness of TENS of the contralateral limb versus ipsilateral to decrease PLP [ 67 ]. Though there is no strong evidence, low-frequency and high-intensity TENS is thought to be more effective than other doses [ 68 ]. TENS devices are portable, are easy to use, and have few side effects or contraindications.

3.2.2. Mirror Therapy

Mirror therapy was first reported by Ramachandran and Rogers-Ramachandran in 1996 and is suggested to help PLP by resolving the visual-proprioceptive dissociation in the brain [ 69 , 70 ]. The patient watches the reflection of their intact limb moving in a mirror placed parasagittally between their arms or legs while simultaneously moving the phantom hand or foot in a manner similar to what they are observing so that the virtual limb replaces the phantom limb. Simian studies have shown the existence of mirror neurons in the brain which fire both at times when an animal performs an action or observes an action [ 71 ]. Similar homologous neurons have also been discovered in humans [ 72 ]. The presence of mirror neurons in the brain is also supported by the phenomenon of tactile sensation in the phantom limb elicited by touching the virtual image of the limb in the mirror [ 73 ]. When a person with an intact limb observes a person with amputation, he can only “empathize about the amputation” rather than “feel it himself” because of the null input to the mirror neurons from his intact limb. However, a person with an amputation does not receive such null input as the limb is amputated and this results in the activation of mirror neurons which create a perception of tactile sensation. Consequently, since the activation of these mirror neurons modulates somatosensory inputs, their activation may block protopathic pain perception in the phantom limb [ 72 , 73 ]. A randomized controlled trial of mirror therapy in patients with lower leg amputation has shown significant benefit of PLP versus the control group [ 74 ]. Another controlled trial, however, reported that the mirror condition only elicited a significantly greater number of phantom limb movements than the control condition but did not attenuate phantom limb pain and sensations any more than the control condition [ 75 ].

3.2.3. Biofeedback, Integrative, and Behavioral Methods

Although there are earlier reports suggesting temperature biofeedback to be helpful for burning sensation of PLP, there is no specific evidence to match specific types of PLP with specific biofeedback techniques [ 76 ]. There is also a case report of visual feedback helpful in reduction of phantom pain [ 74 ]. Guided imagery, relaxation techniques, and hypnosis have been employed in the treatment of different neuropathic pains and may also be useful for PLP [ 28 , 77 , 78 ]. There are case reports of the beneficial effect of acupuncture for PLP [ 79 , 80 ]. The effectiveness of cognitive behavioral therapy in neuropathic pain syndromes has been reported in a number of case studies [ 81 , 82 ].

3.2.4. Surgical Intervention

Surgical interventions are usually employed when other treatment methods have failed. A case report relates the effectiveness of lesioning the dorsal root entry zone (DREZ) on upper limb phantom pain resulting from brachial plexus avulsions [ 83 ]. Another case report showed that, for selected patients, who have not obtained adequate relief with medical management, spinal cord stimulation was found to be effective [ 84 ]. Case reports of improvement of PLP with deep brain stimulation of the periventricular gray matter and thalamic nuclei have been published [ 85 ]. Motor cortex stimulation was also found to be helpful in a case of PLP [ 86 ].

3.2.5. Electroconvulsive Therapy

A case report of positive outcome has been published even though the mechanism and role of ECT relative to PLP is not well understood [ 87 ].

4. Conclusion

PLP is a relatively common and disabling entity. We have learned much about the pathophysiology and management of PLP since it was first described about five centuries ago. However, there is still no one unifying theory relative to the mechanism of PLP. Specific mechanism-based treatments are still evolving, and most treatments are based on recommendations for neuropathic pain. The evolution of the mechanistic hypothesis from body schema and neuropathic theories to the recently proposed role of mirror neurons in the mechanism of pain have added to our understanding of PLP. Further research is needed to elucidate the relationship between the different proposed mechanisms underlying PLP. A synthesized hypothesis explaining the phenomenon of PLP is necessary in the future for the evolution of more specific mechanism-based treatment recommendations.

IMAGES

  1. 5 Ways To Achieve Phantom Limb Pain Relief

    physical therapy for phantom limb pain

  2. Phantom Limb Pain

    physical therapy for phantom limb pain

  3. Mirror Therapy Needs Time to Work in Severe Phantom Pain

    physical therapy for phantom limb pain

  4. Mirror therapy for phantom limb pain

    physical therapy for phantom limb pain

  5. Visual Feedback Effective Option for Phantom Limb Pain

    physical therapy for phantom limb pain

  6. A new theory for phantom limb pain points the way to more effective

    physical therapy for phantom limb pain

VIDEO

  1. Pain.phantom limb pain treatment

  2. Phantom Limb Pain

  3. Phantom Limb Pain 👻 #ChachaReelSmooth #phantomlimbpain #amputee #health #fyp

  4. How to reduce Phantom Limb pain through Physiotherapy Treatment

  5. Unseen Strength: The Fascinating Phenomenon Of Phantom Limb Pain

  6. The Therapy For Phantom Limbs Is WILD

COMMENTS

  1. Physical Therapy Guide to Phantom Limb Pain

    Physical therapists use a variety of treatment options to help people with phantom limb pain. Physical therapists are movement experts. They improve quality of life through hands-on care, patient education, and prescribed movement. You can contact a physical therapist directly for an evaluation.

  2. Phantom Limb Pain

    Aetiology There are numerous theories about the causes of phantom limb pain including peripheral, central and spinal theories: Peripheral Theories Remaining nerves in the stump grow to form neuromas, which generate impulses. These impulses are perceived as pain in the limb which has been removed.

  3. Managing Phantom Pain

    Touch Urination or defecation Sexual intercourse Angina Cigarette smoking Changes in barometric pressure Herpes zoster Exposure to cold. If you notice any particular thing triggering an episode of PLP for you, let your healthcare provider know. Some triggers can be avoided – for example, you can prevent constipation or stop smoking.

  4. Phantom Limb Pain: Mechanisms and Treatment Approaches

    Mirror therapy, a relatively recently proposed therapy for phantom limb pain, has mixed results in randomized controlled trials. Most successful treatment outcomes include multidisciplinary measures. This paper attempts to review and summarize recent research relative to the proposed mechanisms of and treatments for phantom limb pain. Go to: 1.